
 - 1 - 

Interactive Data Visualization: A Petri Dish for Human-Computer Complementarity 
Professional Statement, Arvind Satyanarayan, MIT EECS & CSAIL 

“To think in interaction with a computer in the same way that you think with a colleague whose competence supplements your own 
will require much tighter coupling between [human] and machine.” —J. C. R. Licklider, Man-Computer Symbiosis, March 1960.  

How can we harness advances in machine automation to promote human agency? This question has long-motivated human-com-
puter interaction (HCI) dating back to Licklider’s vision of having the strengths of computers complement the limitations of humans 
and vice-versa. The rapid advances of artificial intelligence (AI) have lent new urgency to this question as generative AI, which increas-
ingly demonstrates competence at tasks previously thought to require human creativity, threatens to deskill and/or displace human 
labor. My research investigates this question through the lens of interactive data visualization, a domain that exemplifies the prom-
ises and tensions of balancing automation and agency. Society has embraced visualization—from scientific discovery to business 
intelligence, journalism, and public policy—as a critical medium for recording, analyzing, and communicating data. While automa-
tion plays an important role in this domain—for instance, by optimizing data processing or recommending perceptually effective 
designs—a visualization is only insightful because it allows a person to apply their perceptual and cognitive abilities to make observa-
tions about data, and then interpret these observations for their given task, data domain, and sociocultural context.  

My research group studies complementarity via the computational representations that mediate interactions between humans and 
computers. We design domain-specific languages for interactive visualization and user interfaces, and explore how these languages 
can serve as shared representations: artifacts that users manipulate as part of a (graphical or textual) interface, and that automated 
systems reason about to accelerate a user’s workflow. In parallel, to help users inspect automated methods, we develop visual analysis 
techniques for comparing neural networks’ learned representations with human-designed counterparts, and explore how (mis)align-
ments are opportunities for uncovering novel abstractions of a domain’s semantics. Finally, we bridge human-designed and machine-
learned representations to make visualizations accessible to blind and low-vision people. By reflecting on these threads of work, I 
have also developed a novel conceptual model of complementarity grounded in agency that offers a roadmap for future research.  

My group’s research outcomes have been broadly disseminated and widely adopted. Our visualization languages, Vega and Vega-
Lite, are used in industry (e.g., at Apple, Google, Microsoft, etc.), in journalism (e.g., at the LA Times), on Wikipedia, by the Jupyter 
data science community [35], and by researchers across diverse scientific disciplines (e.g., astrophysics [39], biology [28], electrochem-
istry [15], etc.). Moreover, the visualization research community is adopting our work on accessibility, including our accessible visual-
ization toolkit Olli, to serve as the foundation for empirical research [10,29,40], benchmark evaluations [6,9], and systems-building 
[7,27,34]. An interactive article we published about our ethnography of COVID-19 visualizations has been read by over 35,000 people 
after repeatedly going viral on social media, and led to invited presentations to the US Department of Health and Human Services 
and the UK Prime Minister’s Office.  Finally, our work has been recognized with Best Paper awards and honorable mentions across a 
range of research communities (IEEE VIS, EuroVis, ACM CHI, ACM IUI, ACL), as well as the NSF CAREER award, Google Research 
Scholar Award, IEEE VGTC Significant New Researcher Award, and an Alfred P. Sloan Fellowship.  

DESIGNING DECLARATIVE DOMAIN-SPECIFIC LANGUAGES TO GROW USERS’ EXPRESSIVE POWER 
The first thread of my research focuses on users’ expressive power, targeting tasks that either require enormous effort or are altogether 
out-of-reach. I develop domain-specific languages (DSLs): textual interfaces with primitives grounded in the semantics of a particular 
domain. Critically, following an approach of complementarity, I design these languages to be declarative: users compose these primi-
tives to specify what they would like to produce, and the underlying language runtime automatically synthesizes low-level details to 
determine how the necessary execution occurs. Thus, I achieve expressive gains by both designing for cognitive efficacy (e.g., ease-of-
use) and by exploring novel inferences that language runtimes and graphical systems can perform to support users.  

My students, collaborators, and I have conducted this work largely atop the declarative visualization stack from my PhD work [22,24–
26] to address the task of authoring dynamic visualizations. At the lowest level of the stack, inspired by my Reactive Vega language 
[25,26], we developed DIEL [37]: a middleware framework that extends the benefits of declarative specification to scenarios where 
backing data is distributed across multiple locations, or where interactive events cannot be synchronously processed to completion. 
DIEL supports these use cases by adapting two abstractions from distributed databases: maintaining an immutable log of interaction 
events, and defining interactive state as logical constraints over these log entries. In contrast to prior approaches, DIEL offers a unified 
data model for “live” and “stored” data, and the DIEL runtime maintains an event loop to reevaluate data state as new events occur 
(e.g., in response to remote database calls).  
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At the mid-level of the stack, we made a key observation: interaction and animation are 
parallel concepts. Where interaction transforms data or updates visual properties in re-
sponse to user input, animation does the same in response to timers. This parallelism is es-
pecially important in immersive environments (i.e., augmented, mixed, and virtual reality) 
as interaction unfolds in more embodied ways (e.g., through gestures). Thus, animation 
becomes a crucial mechanism for maintaining congruency—that is, helping users map their 
embodied interactions to changes to the visualization. Armed with these insights, we de-
veloped Animated Vega-Lite [43], extending our Vega-Lite grammar [24] with a unified set 
of abstractions for authoring static, interactive, and animated 2D visualizations; and, Dei-
mos [11], the first toolkit to unify these concepts for immersive 3D visualizations, defining 
congruency as a set of animated transitions between partially-specified interactive states.  

Finally, at the highest level of the stack, we have explored how these DSLs can serve as 
shared representations by developing novel systems that reason about interactive visualiza-
tion state and design in terms of Vega and Vega-Lite. Lyra 2 [41] is a graphical interface for 
authoring interactive visualizations without coding. Direct manipulations (e.g., dragging 
data fields and dropping them onto the canvas) and demonstrations (e.g., performing 
mouse clicks or drags on the designed visualization) are heuristically parsed to generate 
corresponding statements in Vega or Vega-Lite. Similarly, B2 [38] tightens the feedback 
loop between coding and interactive analysis in computational notebooks by automatically 
synthesizing Vega-Lite visualizations based on data frame provenance, and by reifying in-
teraction states as a semantically-meaningful log of data queries in a code cell.  

Through this work, we have been able to identify that a high expressive ceiling is not suf-
ficient for increasing users’ sense of agency. Rather, high expressivity must be coupled 
with low viscosity: an interface language should allow users to nimbly move through al-
ternate statements (e.g., switching between client-side or client-server data distributions 
with DIEL, or mixing static, interactive, or animated modalities with Animated Vega-Lite). 
We have since investigated how these twin principles generalize to domains besides inter-
active visualization: with Bluefish [20] for authoring graphical diagrams such as those found 
in mathematics, computer science, and physics; and via Varv [5] for developing malleable 
user interfaces (UIs) that end-users can reprogram at runtime. To enable expressive and 
fluid composition in their respective domains, both toolkits take modern UI frameworks 
(e.g., React) as a useful point of departure. Bluefish relaxes the definition of a UI compo-
nent such that a parent container need not fully specify the size and layout of its children, 
and computes a relational scenegraph—a compound graph structure that captures both hi-
erarchical and adjacency relationships. Visual elements can, thus, participate in spatial ar-
rangements that crosscut the nested hierarchies of UIs. And, through a series of high-level 
declarative statements rather than low-level imperative commands, authors can smoothly 
flatten a specification to unlock spaces of alternate designs (as the figure shows). Varv, as 
UI architecture pattern, can be thought of as (MC)V, or ModelController-View: it defines 
UIs in terms of concepts, declarative encapsulations of data and view-agnostic actions that 
define how the data can be manipulated; and, templates, which reify any given concept into 
myriad UI fragments. This separation of concerns elevates interaction as the central fo-
cus of UI design, making it composable and extensible purely through accretion rather 
than modification— akin to introducing new CSS stylesheets to override existing rules.   

Alongside building toolkits—which helps identify design principles and usefully populates the design space for growing users’ expres-
sive power—my research also empirically studies the cognitive [36] and sociotechnical implications [12] of greater expressive power. 
For instance, at the height of the COVID-19 pandemic, my research group conducted a 6-month digital ethnography of social media 
discourse to discover large groups of users marshaling data science and visualization in ways that exemplify citizen science—includ-
ing critically assessing data sources, debating the validity of various metrics, and designing polished visualizations—but in opposition 
to public health guidance [12]. Our findings expose urgent tensions in data visualization research: a focus on simplicity, clarity, and 
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binary categories of data literacy/illiteracy, do not capture these groups’ skillful manipulation of data. In ongoing work, we are further 
unpacking these tensions. By drawing on sociolinguistic theory, we show that such visualizations do more than simply encode data; 
they also function as social artifacts that mediate relationships and identities between individuals, groups, and institutions.  

ALIGNING LEARNED REPRESENTATIONS TO ENABLE INTERPRETABILITY AND KNOWLEDGE DISCOVERY 
Despite their astonishing capabilities, deploying neural networks is fraught with risk be-
cause it is difficult to understand how they operate, or determine how fair or equitable 
their output is. In response, researchers have begun to contribute techniques for explain-
ing a model’s output in terms of the features of its input data (e.g., the pixels of an image, 
words in a sentence, etc.). While valuable, the lens of agency highlights why a purely tech-
nical approach isn’t sufficient: models are situated in specific sociocultural contexts and, 
as my students and I theorize [30] and demonstrate [31], people have rich formal and tacit 
knowledge as well as lived experience that must be brought to bear to interpret and adapt 
model outputs within these contexts. However, through formative interviews [3], we find 
existing interpretability techniques poorly support users in this task. Users interact with 
explanations in ad hoc ways which, at best, requires non-trivial effort to distill actionable 
insight and, at worst, undermines their confidence in the validity of their findings. 

To facilitate more systematic interpretation of machine-learned representations, my stu-
dents and I have developed novel visual analysis methods inspired by Jaccard similarity: a 
measure of how similar and/or diverse two sets are, calculated as their intersection-over-
union. With the Embedding Comparator [3], we use Jaccard similarity to define the recip-
rocal local neighborhood: for every instance in a dataset, how many of its nearest neighbors 
are shared between a pair of models, and how many are unique to a specific model. Simi-
larly, with Shared Interest [4], we compute the alignment between model saliency (a cal-
culation of how important each input feature is to the final output) and human-annotated 
ground truth by composing Jaccard similarity with proportionality measures analogous 
to precision and recall (see figure). Across both systems, we use these metrics to organize 
users’ exploration of models’ latent spaces and accelerate investigation of specific data 
instances. For example, with Shared Interest, users can structure their analyses around 
eight (mis)alignment patterns that we identified as recurring across computer vision and 
natural language classification models (two patterns shown in the figure). In evaluations, 
we found that, by grounding interpretability interfaces in task-based metrics, domain ex-
perts explored models’ latent spaces more broadly and deeply, and reported greater con-
fidence in their results than using their existing Jupyter-based workflows [3,4]. 

Despite this success, neither system fully “closes-the-loop”—that is, once a user makes an 
observation, they are left to their own devices to take any follow-up action. To explore a 
more end-to-end workflow, my students and I developed Kaleidoscope [32]: a system for 
testing model behavior through iterative interpretation. Users start by identifying data 
instances that express a concept they would like to test, and then successively generalize 
the concept’s definition with additional relevant instances that Kaleidoscope retrieves by 
computing a distance metric. Selected instances are then used to test model output or to test semantically meaningful shifts in model 
behavior. We instantiated Kaleidoscope to test a comment moderation model with 13 Reddit moderators, and found that its iterative 
workflow not only preserved the affordances of systematic analysis (e.g., helping participants define concepts more comprehen-
sively), it also helped draw out participants’ implicit knowledge, and reason about context-specific tradeoffs. For example, when 
testing the moderation of racist comments, the retrieved instances helped a participant identify a distinction between outrightly of-
fensive comments and those that disguise racist sentiment behind lengthy arguments—the latter set proves challenging for even hu-
man moderators to evaluate. This finding echoes an observation made by a board-certified dermatologist who, when analyzing a mel-
anoma-detection model with Shared Interest, alluded to the opportunity for deepening his domain knowledge: “[the model] is seeing 
something we’re not truly appreciating in the clinical image […] Maybe there’s really subtle changes we’re not picking up that it is able to.”  

To facilitate such knowledge discovery through interpretability, my students, collaborators, and I have also developed techniques for 
expressing learned representations in terms of the underlying domain semantics. We have shown how an optimization process [16] 
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transforms learned representations from abstract matrices into semantic dictionaries [17]: structures that map activations, or the 
amounts neurons fire, to symbolic representations of these neurons (e.g., iconic images for computer vision neurons). In doing so, we 
observe that models learn abstractions for concepts in more nuanced ways than we have equivalent natural language to describe—
for instance, InceptionV1 has several “floppy dog ear” neurons that detect different levels of droopiness, length, and shape [17]. Along-
side this “bottom-up” approach, my students and I have also developed a “top-down” approach we call abstraction alignment [2]: start-
ing with a knowledge graph, we map a model’s output classes to its leaves, and propagate confidence scores through this structure to 
determine how the conceptual relationships a model has learned correspond to human taxonomies. Here, misalignments can signal 
opportunities to clarify or expand our knowledge. For instance, in a case study with medical terms, abstraction alignment identifies 
discrepancies between how terms are meant to be used (i.e., as defined in guidelines maintained by the World Health Organization) 
and how they are used in practice; notably, our findings correspond to updates the WHO made between v9 and v10 of its guidelines. 

BRIDGING DESIGNED AND LEARNED ABSTRACTIONS FOR ACCESSIBLE DATA REPRESENTATION 
While the previous two threads of my research largely examine human-designed and machine-learned representations in isolation, 
the final thread of my research brings them together in a domain where striking the right balance between machine automation and 
human agency is particularly important and urgent: accessibility. As the COVID-19 pandemic demonstrated, visualization is a critical 
medium for analyzing and communicating data, but largely locks out blind and low-vision (BLV) people [13,14]. Recent advances in 
large language models (LLMs) suggest that AI has a socially beneficial role to play but, in a study we conducted [14], BLV people ex-
pressed trepidation about how automated methods may foreclose opportunities to interpret data by and for themselves. As one par-
ticipant emphasized: “I want to have the time and space to interpret the numbers for myself, before I read the analysis.” 

Through a co-design process with Daniel Hajas, a blind HCI researcher and science communicator at University College London, my 
students and I developed a design space of richer experiences of visualizations with screen readers [42]—a commonly used assistive 
technology that narrates on-screen content, but typically renders visualizations as either long lists of raw data values or as incompre-
hensible strings of “image image image.” Thus, a key challenge is how to linearize the information depicted in a visualization while 
preserving the ability to read at multiple levels of granularity. Our design space suggests multiple serialization strategies and, through 
studies with BLV participants, we found laying textual descriptions out in a tree structure (as shown in the figure below) to be partic-
ularly promising. Branches correspond to different fields that are encoded in the visualization, and each level of the tree offers suc-
cessively finer-grained resolution about the relevant data values. This structure can be navigated via the keyboard by moving up/down 
tree nodes, by moving along screen coordinates to replicate the experience of reading tactile graphics, or by jumping directly to spe-
cific points of interest. We have instantiated this approach as an accessible visualization toolkit called Olli [1], which ingests a declar-
ative visualization specification (e.g., from Vega-Lite, Observable Plot, etc.) to generate the textual hierarchy. Descriptions are gener-
ated via tokenized string templates, which users can customize based on their context-specific needs (e.g., modulating verbosity) [8].  

For more expressive textual descriptions of visualizations, my group has turned to LLMs. To understand what makes a textual de-
scription useful for BLV people, we collected and analyzed 2,000 visualization captions, identifying four levels of semantic content 
that they can convey [14]: chart construction (e.g., chart type, axis ranges); descriptive statistics (e.g., min, max); perceptual and cog-
nitive features (e.g., complex trends and patterns); and, domain-specific context. Based on the preferences of 30 blind and 60 sighted 
participants, we focused on the first three levels and scaled our approach up to develop VisText [33]: a benchmark for semantically-
rich chart captioning, comprising a dataset of over 12,000 chart-caption pairs, and a baseline set of unimodal and multimodal mod-
els. Besides scale and quality of data, VisText’s key result is that models trained on structured representations of charts (e.g., scalable 
vector graphics, or SVG) outperform models trained on chart images and are just as viable as models trained on data tables. This result 
has important implications for wider deployment as SVG is the most common format for web-based visualizations and can be reverse-
engineered from a rasterized chart image [18], whereas backing data tables can be difficult (if not impossible) to locate in-the-wild. In 
ongoing work, my group is integrating these threads by augmenting Olli’s hierarchical descriptions with LLM-generated domain-

Olli augmented with LLMsOlli: Accessible Hierarchical Textual Descriptions of Data Visualizations
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specific context (the fourth level of semantic content). For example, as the figure above shows, we use an LLM to group time-series 
data about wheat prices into significant periods such as “The Pre-Industrial Era,” “Early Industrial Era,” “The Revolutionary Period,” etc.  

 TOWARDS A THEORY OF HUMAN-COMPUTER COMPLEMENTARITY  
By reflecting on my three lines of research, and through a deep collaboration with linguistic 
anthropologist Graham Jones, we observe that existing AI and HCI paradigms position auto-
mation and agency as opposite ends of a spectrum. AI measures intelligence in terms of com-
petence, which makes it difficult to assess whether a system’s response constrains human ac-
tion, or to systematically imagine alternative, more empowering responses. HCI models inter-
action as an input-output loop, which largely treats the computer as an inanimate tool to be 
used by human agents. Neither approach captures the richer interaction dynamics that gen-
erative AI increasingly enables: its capacity for context-sensitive responses yields open-ended 
interaction flows where outcomes are more emergent and thus feel more co-produced than be-
fore, often in ways that surprise users, model developers, and designers.  

In a recent white paper [23], Jones and I redefine interaction and intelligence in terms of 
agency: compositional agency, or the capacity to express a goal-directed intent; and interpretive 
agency, or the ability to evaluate the efficacy of this expression. Thus, complementarity occurs 
by fusing the agencies of a human user and automated system together—with different fu-
sions being desirable for different tasks or contexts, or by different cultures. Critically, whereas 
prior approaches imagine a relatively stable balance of control between a human and computer 
that is fixed by the model developer or interface designer, fused co-agency enables develop-
ers/designers to delegate a region of control (the figure’s dashed orange rectangles) within 
which a user and computer can dynamically re-negotiate their roles over the course of an in-
teraction. In ongoing work, my students, collaborators, and I are operationalizing these ideas 
via an approach we call programming with semi-formal representations [19,21]: allowing a 
user to fluidly vary their compositional agency by mixing modalities and notational systems 
(e.g., code, handwritten math formula, a screenshot of a data table, etc.) to express program semantics that smoothly bridge multiple 
levels of abstraction, and having the computer flexibly respond (e.g., following directive and/or supportive communication styles). 

TEACHING, MENTORING, AND SERVICE 
At MIT, I co-instruct the undergraduate course “6.1040: Software Design” with Prof. Daniel Jackson, and developed a new graduate 
course “6.859: Interactive Data Visualization” which draws ~130 students from diverse disciplines (including computer science, architec-
ture, design, urban planning, and business). Students have nominated me for MIT’s Teaching with Digital Technology Award multi-
ple times, and materials from 6.859 were upvoted to the front page of Hacker News. In collaboration with Profs. Sarah Williams and 
Catherine D’Ignazio (Urban Studies & Planning), I expanded 6.859 to a joint undergraduate/graduate course “Interactive Visualization 
& Society.” Among many additions, this class features a weekly reading group where ~100 graduate students actively debate research 
papers on data ethics. And, final projects now address a topic of societal importance in collaboration with public policy organiza-
tions. For example, last year, students worked with the World Food Program to visualize Central American migration into the United 
States. Class materials are being reused at several schools including Stanford University, Carnegie Mellon University, the University 
of Washington, and Université Paris-Saclay. My teaching has been recognized with the department’s Kolokotrones Education Award. 

I advise or have advised 6 PhD students and 2 Postdocs—5 of whom have started or secured faculty positions at MIT, Brown University, 
CU Boulder, the University of Utah, and UC San Diego. My PhD students and I have mentored over 30 junior researchers (including 
high school, undergraduate, and Master’s students). These students have led or co-authored publications, and have contributed to our 
open-source projects. I prioritize cultivating a research group culture that is intellectually curious and stimulating, while also being 
supportive and inclusive. I have successfully advised several women and students of color and, based on student nominations, I was 
awarded the department’s Seth J. Teller Award for Excellence, Inclusion, and Diversity and MIT’s Committed to Caring Award. 

I serve on organizing committees (IEEE VIS 2018–present), program committees (IEEE VIS, OpenVis Conf, Information+, ACM CHI, 
IUI, UIST), and in leadership (IEEE VIS 2026 General Chair, IEEE VGTC Publications Chair, Distill.pub co-editor). I devote significant 
effort to community building by organizing recurring BostonVIS events, a biennial PhD Summer School, and an annual workshop for 
visualization junior faculty. I organize the bi-weekly MIT CSAIL HCI seminar series which has fostered the HCI community at MIT 
and in greater Boston. To broaden participation in research, I serve on the MIT EECS Committee for Diversity, Equity, and Inclusion.  
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