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Interactivity is a key concern in system design. Judiciously designed interaction provides a more cohesive user experience 
and enables people to steer algorithmic processes — for example, guiding predictions when the input or output domains 
are unbounded. Yet, despite decades of research in human-computer interaction, reasoning about interaction remains dif-
ficult. Automated design and retargeting, for instance, requires more tractable representations of interaction than the im-
perative callbacks used today. My research develops new declarative models of interaction, which describe what an interac-
tion should accomplish rather than how it should be computed, and leverages them in novel interactive design systems. 

In my thesis, I study these issues in the domain of interactive data visualization. Data visualization provides an opportuni-
ty for broad impact as its use has gone mainstream — from business intelligence to data-driven journalism, society has em-
braced visualization to record, analyze, and communicate data. It presents an attractive petri dish for my research as inter-
action is critical to effective visualization, allowing users to iteratively refine their mental models by engaging data in dia-
logue. While visualization offers a well-constrained design space that has been modeled formally, existing models account 
for interaction poorly, if at all. Moreover, these models have only been instantiated in textual programming languages, and 
significant opportunity exists to exploit them within higher-level systems that accelerate analysis and design. 

My work has focused on the design and development of the Reactive Vega stack (Figure 
1). It features two new declarative interaction models: Reactive Vega, an expressive low-
level representation that extends techniques from both Functional Reactive Program-
ming and streaming databases [3]; and Vega-Lite, a higher-level grammar that enables 
concise systematic enumeration of interaction techniques [1]. These components build one 
on top of the other, providing platforms for further research. I have investigated the impli-
cations of declarative interaction on the architecture of visualization systems [2], and 
how it enables Lyra, a direct-manipulation visualization design environment [4].  

These systems have been released as open-source projects, have been widely adopted, 
and have given rise to an ecosystem of interactive visualization tools. Users can author 
an exploratory visualization in the Jupyter Notebook, export it to Lyra via Vega-Lite 
and add an explanatory annotation layer, and then embed the resultant Reactive Vega 
visualization within a Wikipedia article. As a result, rather than a single monolithic 
system, the Reactive Vega stack facilitates development of targeted applications, and 
allows users to work at the level of abstraction most suited for the task at hand. 

REACTIVE VEGA: DECLARATIVE INTERACTIVE VISUALIZATION + A STREAMING DATAFLOW ARCHITECTURE 

Declarative specification has become the dominant means of au-
thoring data visualizations, but declarative support for interaction 
techniques remains weak. At best, users can use simple palettes of 
common techniques (e.g., brushing, panning, etc.) but customiza-
tion is limited. For custom interaction, users must program im-
perative event handling callbacks which undo the benefits of de-
clarative design. The complexity of state management and inter-
leaved execution falls to the user, not the underlying system, and 
has provoked the colloquialism “callback hell.” 

In response, I designed Reactive Vega: a declarative language for 
interactive data visualization that models user interaction as 
streaming data [2, 3]. Alongside existing declarative visual encod-
ing primitives (Figure 2), Reactive Vega introduces event selectors 
and signals, two Functional Reactive Programming constructs. 
Event streams, defined with a novel CSS-inspired selector syntax, abstract the complexity of capturing and sequencing input 
events. For example [mousedown, mouseup] > mousemove defines a stream of drag events — a sequence that would 
previously require three callbacks to modify external state. Event streams drive signals: dynamic expressions that are au-
tomatically reevaluated when new events fire. Signals parameterize visual encoding primitives, thereby endowing them 
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Figure 1: The Reactive Vega stack provides a 
platform for interactive visualization research, 
and has been integrated into production sys-
tems such as Wikipedia and the Jupyter Note-
book. Highlights are my thesis contributions.

{
  "data": [{"name": "iris", "url": "data/iris.json"}],

  "scales": [{
      "name": "sx", "type": "linear", "range": "width",
      "domain": {"data": "iris", "field": "sepalWidth"}
    },
    {"name": "sy", ...}, {"name": "sc", ...}
  ],

  "axes": [{"type": "x", "scale": "sx"}, ...],

  "marks": [{
    "type": "symbol",
    "from": {"data": "iris"},
    "properties": { "update": {
      "x": {"scale": "sx", "field": "sepalWidth"},
      "y": {"scale": "sy", "field": "petalLength"},
      "fill": {"scale": "sc", "field": "species"},
      "fillOpacity": {"value": 0.5},
    }}
  }]
}Figure 2: Vega’s declarative visual encoding abstractions. Data is im-

ported from a URL. Scales are defined to transform data values to visual 
values. Properties of graphical marks (here, symbols) are determined by 
scale mappings. Guides (here, axes) are instantiated as well.
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with reactive semantics. These declarative specifications are ex-
pressed with JavaScript Object Notation (JSON), and are parsed 
to construct a dataflow graph. By adapting techniques from 
streaming databases, the dataflow operators perform computa-
tions on changesets of tuples or scenegraph elements, and are re-
played if signal parameter values change.  

Supporting expressive interactive visualizations required ex-
tending both reactive and data stream methods. As they are 
backed by input events, signal values are, by default, defined in 
pixel space. Reactive Vega introduces scale inversions and predi-
cates to lift signal values to the data domain and define data 
queries respectively (Figure 3). These abstractions generalize an 
interaction technique, allowing it to coordinate multiple visual-
izations or be reused across them. Moreover, to support data-
driven multi-view displays, Reactive Vega’s dataflow is condi-
tioned on data values. As data is unobserved at compile-time, the 
dataflow graph dynamically rewrites itself at runtime by extending 
or pruning branches based on varying input data or events. 

Together, Reactive Vega’s primitives and architecture extend the benefits of declarative specification to interaction design. 
With event streams and signals, users need only describe the relationship between input events and interactive state re-
spectively. State no longer needs to be manually maintained, but is automatically updated when new events occur. This de-
coupling also facilitates retargeting an interaction (e.g., to support mouse and touch) as alternate source event streams can 
be specified for a signal without affecting any downstream logic. The system runtime is entirely responsible for managing 
the complexity of execution and can even unobtrusively optimize processing. Thus, Reactive Vega is both sufficiently ex-
pressive to author a diverse range of interactive visualizations (Figure 4) and often more performant that D3 [2].  

VEGA-LITE: A GRAMMAR OF INTERACTIVE GRAPHICS 

As its abstractions are relatively low-level, it is apt to describe Reactive Vega as an “assembly language” for interactive visu-
alization. While this approach is useful for custom explanatory visualization, the verbose specifications it yields can impede 
the rapid authoring process crucial for exploratory visualization. Analysts instead prefer concise, high-level visualization 
grammars (e.g., R’s ggplot2) which resolve ambiguous specifications by applying smart default values. A smaller language 
surface area also makes higher-level reasoning and inference tasks more tractable — for example, providing fewer visual 
encoding properties to enumerate and rank has enabled novel visualization recommender systems [10, 11].  

To meet this goal of concision, I developed the formalism for a novel grammar of interaction within the higher-level Vega-Lite 
language [1]. Interaction techniques in Vega-Lite are composed of selections: an abstraction over input event processing, the 
visual elements or data points a user has chosen, and a predicate function for inclusion testing (each of these are separate 
constructs in Reactive Vega). To concisely instantiate common defaults, three selection types are offered: point, list, and inter-
val, to select a single point of interest, a discrete list of points, or a continuous region of points respectively. Users can man-
ually override the constituent components of a selection, for example populating a point selection on hover rather than the 
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Figure 4: Example interactive visualizations constructed with Reactive Vega. (left-right) U.S. airport connections; interactive normalization of 
time-series stock prices; cross filtering multiple coordinated histograms; reordering rows and columns of an adjacency matrix; and, DimpVis [13], 
a touch-based technique for browsing time-series data that emulates Hans Rosling’s narrative style. 

 "scales": [{"name": "sx", ...}, ...],

  "signals": [{
    "name": "brush_start", 
    "streams": [{
      "type": "mousedown", "expr": "eventX()"
    }]}, {
    "name": "brush_end", 
    "streams": [{
      "type": "[mousedown, mouseup] > mousemove",
      "expr": "eventX()"
    }]}
  ],

  "predicates": [{
    "name": "inside_brush", 
    "range": [{"signal": "brush_start"}, 
              {"signal": "brush_end"}],
    "scale": {"name": "-sx", "invert": true},
    "item": {"arg": "key"}
  }],

  "marks": [{
    "type": "symbol", "properties": { "update": {
      "fill": {
        "rule": [{
          "predicate": {
            "name": "inside_brush",
            "key": {"field": "key"}
          },
          
          "scale": "sc", "field": "species"
        },
        {"value": "grey"}
      ]}
  }}]

brush_start brush_end

mousedown [...] > 
mousemove

-sx -sx

inside_brush (key)

rule

inside_brush (key=data.key) fill

fill

event 
streams

scale 
inversions

predicates

symbol 
mark

signals

Figure 3: A declarative Reactive Vega specification for a brushing inter-
action. Signals capture mousedown and drag events, and calculate the 
brush extents. The extents feed a range predicate, expressed over data 
space via a scale inversion, to determine the symbol mark’s fill color.

https://vega.github.io/vega-editor/?mode=vega&spec=airports
https://vega.github.io/vega-editor/?mode=vega&spec=index_chart
https://vega.github.io/vega-editor/?mode=vega&spec=crossfilter
https://vega.github.io/vega-editor/?mode=vega&spec=reorder_matrix
https://vega.github.io/vega-editor/?mode=vega&spec=dimpvis
https://vega.github.io/vega-editor/?mode=vega&spec=airports
https://vega.github.io/vega-editor/?mode=vega&spec=index_chart
https://vega.github.io/vega-editor/?mode=vega&spec=crossfilter
https://vega.github.io/vega-editor/?mode=vega&spec=reorder_matrix
https://vega.github.io/vega-editor/?mode=vega&spec=dimpvis
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default click. To further promote rapid specification, I identified recurring design patterns and encapsulated them within a 
set of selection transformations. For instance, a toggle transform (Fig 5(b)) adds or removes data points from a list selection 
when events occur, whereas a translate transform (Fig 6(c)) offsets a selection’s spatial properties (or corresponding data 
values) via a sequence of events. Once defined, selections parameterize visual encodings by serving as input data, defining 
scale extents, or driving conditional logic. The Vega-Lite compiler ingests these higher-level specifications, also expressed 
as JSON, and emits lower-level Reactive Vega.  

While selections are necessarily less expressive than Reactive Vega’s primitives, they can nevertheless be used to construct 
both common and custom interaction techniques including panning, zooming, linked selection, and interactive index 
charts. This reduction in expressivity, however, is offset by significant gains in concision. A signature result is cross filter-
ing as shown in Figure 6(c). In 2012, this interaction required a custom-built library, with its own idiosyncratic API; with 
Vega-Lite, a general-purpose language, cross filtering can now be realized with only 35 lines of JSON. Moreover, selections 
decompose an interaction method into semantic units that can be systematically varied as shown in Figures 5 and 6. As a 
result, not only can designers rapidly explore alternate points in the design space, but interaction techniques can now be 
systematically enumerated and generated as part of higher-level applications. 

LYRA: VISUALIZATION DESIGN BY DIRECT-MANIPULATION AND DEMONSTRATION 

Reactive Vega and Vega-Lite offer JSON syntaxes to facilitate programmatic generation of interactive visualizations within 
higher-level interactive applications. In my thesis, I explore this nascent space with Lyra: an interactive visualization design 
environment (VDE) [4]. Recognizing that Reactive Vega and Vega-Lite present a fundamental mismatch in representations 
— using textual languages to express visual output — Lyra instead enables authoring visualizations via direct-manipulation. 
Through drag-and-drop interactions, such as those shown in Figure 7, users bind data values to mark properties. A data 

{
  "repeat": {"column": ["hour", "delay", "distance"]},
  "spec": {
    "layers": [{
      "data": {"url": "data/flights-2k.json"},
      "transform": {
       "calculate": [{"field": "hour", "expr": "hours(datum.date)"}]
      },
      "select": {
        "selectedBins": {
          "type": "point", "on": "mousemove",
          "project": {"channels": ["x"]}
        }
      },
      "mark": "bar",
      "encoding": {
        "x": {"field": {"repeat": "column"}, "type": "Q", "bin": true},
        "y": {"aggregate": "count", "field": "*", "type": "Q"},
        "color": {"value": "steelblue"}
      }
    }, {
      "data": {"url": "data/flights-2k.json"},
      "transform": {
        "calculate": [{"field": "hour", "expr": "hours(datum.date)"}],
        "filterWith": "selectedBins"
      },
      "mark": "bar",
      "encoding": {
        "x": {"field": {"repeat": "column"}, "type": "Q", "bin":  true},
        "y": {"aggregate": "count", "field": "*", "type": "Q"},
        "color": {"value": "goldenrod"}
      }
    }]
  }
}

(a) Single-Point Layered Cross Filtering
{...,
  "select": {
    "selectedBins": {
      "type": "set", 
      "on": "click", ...
    }
  },...
}

(b) Multi-Point Layered Cross Filtering

{...,
  "select": {
    "selectedBins": {
      "type": "interval",
      "translate": true,
      ...
    }
  },...
} (c) Continuous  Layered Cross Filtering

Figure 6: Cross filtering is an interaction technique popularized in 2012 by Mike Bostock’s custom-built CrossFilter.js library. In 2015, I recreated it 
as a Reactive Vega specification (Figure 4) and in 2016, as an order-of-magnitude shorter Vega-Lite specification. Moreover, Vega-Lite’s high-
level specification language facilitates rapid exploration of alternative cross filtering interactions.

{
  "data": {"url": "data/cars.json"},
  "mark": "circle",
  "select": {
    "id": {"type": "point"}
  },
  "encoding": {
    "x": {"field": "Horsepower", "type": "Q"},
    "y": {"field": "MPG", "type": "Q"},
    "color": [
      {"if": "id", "field": "Origin", "type": "N"},
      {"value": "grey"}
    ],
    "size": {"value": 100}
  }

(a) Highlight a single point on click

"id": {"type": "point", "project": {"fields": ["Origin"]}}

(d) Highlight a single Origin

"id": {"type": "list", "toggle": true}

(b) Highlight a list of individual points

"select": {
  "id": {"type": "list", "toggle": true, "project": {"fields": ["Origin"]}}
}, ...

(e) Highlight a list of Origins
(c) "Paintbrush": highlight multiple points on hover
"id": {"type": "list", "on": "mouseover", "toggle": true}

Figure 5: A partial depiction of the space of Vega-Lite interaction techniques that can be systematically enumerated for a scatterplot.
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pipeline interface allows users to visually specify and inspect data trans-
formations and layout algorithms. In ongoing work, I am extending Lyra 
to support interaction design through demonstration. 

As a higher-level graphical interface, Lyra allows users to fluidly move 
between the different levels of abstraction. Direct-manipulation interac-
tions and interactive demonstrations generate statements in Vega-Lite, 
which are compiled, and merged into a backing Reactive Vega specifica-
tion; the visual inspectors provide complete control over the latter. Thus, 
users can iterate between rapidly creating recognizable output and mak-
ing fine-grained customizations. This approach yields a diverse range of 
visualizations (Figure 8) without writing a single line of code and, in 
evaluative studies, users remarked that Lyra “made [them] feel more in con-
trol” and that “there is a real joy in using Lyra.” Lyra has been noted as a “sig-
nificant development” [8], nominated for an “Information is Beautiful” 
award [9], and is used by approximately 1,500 users-per-month including 
journalists and educators. 

FUTURE RESEARCH AGENDA 

I plan to continue studying interaction through the Reactive Vega stack 
as it provides both a platform for developing novel interactive systems 
and, critically, a growing and engaged community to study their use with. 

A Science of Interaction 

Developing a generalized theory of interaction — one that answers ques-
tions such as what makes an interaction technique more effective than 
another, or what are principles for combining multiple techniques that 
preserves their individual advantages — has been difficult because exist-
ing empirical evaluations of interactions have been conducted largely in 
an ad-hoc manner. This is due, in part, to representations of interaction 
that have obscured how to isolate properties of an interaction technique 
as experimental variables. As Herbert Simon notes in The Science of Design, 
“solving a problem simply means representing it so as to make the solution trans-
parent,” and my interaction models offer a promising way forward: for a constant Vega-Lite visualization, we can not only 
systematically generate interaction techniques, but also vary their constituent properties. Testing these alternative designs 
with human subjects will allow us to understand the costs and benefits associated with interactions and formulate design 
guidelines, as graphical perception studies have done for visual encodings. 

Further study of these new representations themselves is also needed. In particular, we need to determine what cognitive 
loads they impose on users, as well as what new scaffolding [6] is needed as a result to support the authoring process. 

Automated Design & Inference for Interactive Visualization 

Performing inference over Reactive Vega and Vega-Lite specifications has already yielded new systems for data exploration 
[10] and visualization recommendation [11], and is driving my ongoing work on interaction design by demonstration. These 
applications, however, are only an initial exploration of this design space, and there is fertile ground to study how inference 

Figure 8: Example visualizations created with Lyra. (left-right) Character co-occurrences in Les Misérables; the schedule of the San Francisco Bay Area’s 
CalTrain service in the style of E. J. Marey; ZipScribble by Robert Kosara. 

Figure 7: Using Lyra to recreate Dissecting a Trailer from the 
New York Times. (a) Add a line mark to the canvas. (b) Drag 
a field from a pipeline’s data table to a drop zone to map it 
to a mark property. (c) Add a “group by” data transform to 
create a hierarchy. (d) Edit a scale definition to reverse the 
range. (e) Anchor text marks to rectangles using connectors.
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http://www.nytimes.com/interactive/2013/02/19/movies/awardsseason/oscar-trailers.html?_r=0
http://www.nytimes.com/interactive/2013/02/19/movies/awardsseason/oscar-trailers.html?_r=0
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procedures can be used to accelerate interactive analysis and visualization. For example, mining corpora of interactive vi-
sualization designs [7] can codify best practices and identify trends; this information can then be leveraged in a system like 
Lyra to provide “auto-complete” suggestions, or improve an existing design with a visualization “linter.” As these systems 
are deployed, they should be capable of analyzing user interaction over time, and refining their inference models as needed. 

Collaborative Analysis & Visualization 

Data analysis and visualization are inherently collaborative processes, and support for multiple users will be an important 
ongoing consideration. For example, in studies I conducted with journalists, they reported feeling empowered by a system 
that allowed them to prototype narratives alongside the visualizations developed by their team members — a process they 
were previously locked out of [5]. However, to tighten iteration between collaborators, several open questions remain in-
cluding how awareness and common ground is established between users, and how version control workflows may be 
adapted within graphical systems to support visual and interactive artifacts. The Reactive Vega ecosystem contains several 
such systems that can be readily built on to answer these questions and, as each system targets a different set of tasks, I aim 
to relate recurring design patterns to the shared underlying representations of interactive visualizations. 

Moreover, in multi-user settings, it is especially unlikely that the same application satisfies all users. I am interested in 
studying how system architectures should evolve to enable users to create “mashups” — custom or one-off environments 
that repurpose and recombine existing interfaces and interactive functionality. Studying these issues within the Reactive 
Vega ecosystem is a natural extension of my work — for example, how might Lyra’s direct-manipulation and demonstra-
tion capabilities be extracted into a standalone module (or interactor [3]) such that users could leverage it within Voyager [10] 
to annotate recommended visualizations or make them interactive? 

Toolkits for Domain-Aware User Interfaces 

I believe insights from conducting the above work in the Reactive Vega ecosystem will have ramifications for user interface 
toolkits more broadly. Generalizing these findings will rely on developing representations for a variety of task domains that 
mimic the role of Reactive Vega and Vega-Lite for visualization. Information substrates [12], developed by my collaborators at 
INRIA and Aarhaus University, offers a promising methodology to do so and I am interested in applying it to data science 
tasks such as data modeling and statistical analysis. By performing this work across several domains, I hope to identify re-
curring patterns and processes for constructing these domain-specific representations, and encapsulate them within a new 
genre of toolkits for domain-aware user interfaces. These toolkits would allow developers to prototype new domain-specific 
representations, synthesize simple interfaces in order to assess their expressiveness and effectiveness, provide standard-
ized inference procedures, and would automatically instrument applications to learn from user interaction over time.
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